3.786 \(\int \frac{x \tan ^{-1}(a x)^{3/2}}{(c+a^2 c x^2)^2} \, dx\)

Optimal. Leaf size=109 \[ -\frac{3 \sqrt{\pi } S\left (\frac{2 \sqrt{\tan ^{-1}(a x)}}{\sqrt{\pi }}\right )}{32 a^2 c^2}-\frac{\tan ^{-1}(a x)^{3/2}}{2 a^2 c^2 \left (a^2 x^2+1\right )}+\frac{3 x \sqrt{\tan ^{-1}(a x)}}{8 a c^2 \left (a^2 x^2+1\right )}+\frac{\tan ^{-1}(a x)^{3/2}}{4 a^2 c^2} \]

[Out]

(3*x*Sqrt[ArcTan[a*x]])/(8*a*c^2*(1 + a^2*x^2)) + ArcTan[a*x]^(3/2)/(4*a^2*c^2) - ArcTan[a*x]^(3/2)/(2*a^2*c^2
*(1 + a^2*x^2)) - (3*Sqrt[Pi]*FresnelS[(2*Sqrt[ArcTan[a*x]])/Sqrt[Pi]])/(32*a^2*c^2)

________________________________________________________________________________________

Rubi [A]  time = 0.152058, antiderivative size = 109, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.318, Rules used = {4930, 4892, 4970, 4406, 12, 3305, 3351} \[ -\frac{3 \sqrt{\pi } S\left (\frac{2 \sqrt{\tan ^{-1}(a x)}}{\sqrt{\pi }}\right )}{32 a^2 c^2}-\frac{\tan ^{-1}(a x)^{3/2}}{2 a^2 c^2 \left (a^2 x^2+1\right )}+\frac{3 x \sqrt{\tan ^{-1}(a x)}}{8 a c^2 \left (a^2 x^2+1\right )}+\frac{\tan ^{-1}(a x)^{3/2}}{4 a^2 c^2} \]

Antiderivative was successfully verified.

[In]

Int[(x*ArcTan[a*x]^(3/2))/(c + a^2*c*x^2)^2,x]

[Out]

(3*x*Sqrt[ArcTan[a*x]])/(8*a*c^2*(1 + a^2*x^2)) + ArcTan[a*x]^(3/2)/(4*a^2*c^2) - ArcTan[a*x]^(3/2)/(2*a^2*c^2
*(1 + a^2*x^2)) - (3*Sqrt[Pi]*FresnelS[(2*Sqrt[ArcTan[a*x]])/Sqrt[Pi]])/(32*a^2*c^2)

Rule 4930

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[((d + e*x^2)^
(q + 1)*(a + b*ArcTan[c*x])^p)/(2*e*(q + 1)), x] - Dist[(b*p)/(2*c*(q + 1)), Int[(d + e*x^2)^q*(a + b*ArcTan[c
*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && NeQ[q, -1]

Rule 4892

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[(x*(a + b*ArcTan[c*x])
^p)/(2*d*(d + e*x^2)), x] + (-Dist[(b*c*p)/2, Int[(x*(a + b*ArcTan[c*x])^(p - 1))/(d + e*x^2)^2, x], x] + Simp
[(a + b*ArcTan[c*x])^(p + 1)/(2*b*c*d^2*(p + 1)), x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p,
0]

Rule 4970

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c^(m
 + 1), Subst[Int[((a + b*x)^p*Sin[x]^m)/Cos[x]^(m + 2*(q + 1)), x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d,
e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin{align*} \int \frac{x \tan ^{-1}(a x)^{3/2}}{\left (c+a^2 c x^2\right )^2} \, dx &=-\frac{\tan ^{-1}(a x)^{3/2}}{2 a^2 c^2 \left (1+a^2 x^2\right )}+\frac{3 \int \frac{\sqrt{\tan ^{-1}(a x)}}{\left (c+a^2 c x^2\right )^2} \, dx}{4 a}\\ &=\frac{3 x \sqrt{\tan ^{-1}(a x)}}{8 a c^2 \left (1+a^2 x^2\right )}+\frac{\tan ^{-1}(a x)^{3/2}}{4 a^2 c^2}-\frac{\tan ^{-1}(a x)^{3/2}}{2 a^2 c^2 \left (1+a^2 x^2\right )}-\frac{3}{16} \int \frac{x}{\left (c+a^2 c x^2\right )^2 \sqrt{\tan ^{-1}(a x)}} \, dx\\ &=\frac{3 x \sqrt{\tan ^{-1}(a x)}}{8 a c^2 \left (1+a^2 x^2\right )}+\frac{\tan ^{-1}(a x)^{3/2}}{4 a^2 c^2}-\frac{\tan ^{-1}(a x)^{3/2}}{2 a^2 c^2 \left (1+a^2 x^2\right )}-\frac{3 \operatorname{Subst}\left (\int \frac{\cos (x) \sin (x)}{\sqrt{x}} \, dx,x,\tan ^{-1}(a x)\right )}{16 a^2 c^2}\\ &=\frac{3 x \sqrt{\tan ^{-1}(a x)}}{8 a c^2 \left (1+a^2 x^2\right )}+\frac{\tan ^{-1}(a x)^{3/2}}{4 a^2 c^2}-\frac{\tan ^{-1}(a x)^{3/2}}{2 a^2 c^2 \left (1+a^2 x^2\right )}-\frac{3 \operatorname{Subst}\left (\int \frac{\sin (2 x)}{2 \sqrt{x}} \, dx,x,\tan ^{-1}(a x)\right )}{16 a^2 c^2}\\ &=\frac{3 x \sqrt{\tan ^{-1}(a x)}}{8 a c^2 \left (1+a^2 x^2\right )}+\frac{\tan ^{-1}(a x)^{3/2}}{4 a^2 c^2}-\frac{\tan ^{-1}(a x)^{3/2}}{2 a^2 c^2 \left (1+a^2 x^2\right )}-\frac{3 \operatorname{Subst}\left (\int \frac{\sin (2 x)}{\sqrt{x}} \, dx,x,\tan ^{-1}(a x)\right )}{32 a^2 c^2}\\ &=\frac{3 x \sqrt{\tan ^{-1}(a x)}}{8 a c^2 \left (1+a^2 x^2\right )}+\frac{\tan ^{-1}(a x)^{3/2}}{4 a^2 c^2}-\frac{\tan ^{-1}(a x)^{3/2}}{2 a^2 c^2 \left (1+a^2 x^2\right )}-\frac{3 \operatorname{Subst}\left (\int \sin \left (2 x^2\right ) \, dx,x,\sqrt{\tan ^{-1}(a x)}\right )}{16 a^2 c^2}\\ &=\frac{3 x \sqrt{\tan ^{-1}(a x)}}{8 a c^2 \left (1+a^2 x^2\right )}+\frac{\tan ^{-1}(a x)^{3/2}}{4 a^2 c^2}-\frac{\tan ^{-1}(a x)^{3/2}}{2 a^2 c^2 \left (1+a^2 x^2\right )}-\frac{3 \sqrt{\pi } S\left (\frac{2 \sqrt{\tan ^{-1}(a x)}}{\sqrt{\pi }}\right )}{32 a^2 c^2}\\ \end{align*}

Mathematica [A]  time = 0.0923423, size = 75, normalized size = 0.69 \[ \frac{\frac{4 \sqrt{\tan ^{-1}(a x)} \left (2 \left (a^2 x^2-1\right ) \tan ^{-1}(a x)+3 a x\right )}{a^2 x^2+1}-3 \sqrt{\pi } S\left (\frac{2 \sqrt{\tan ^{-1}(a x)}}{\sqrt{\pi }}\right )}{32 a^2 c^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*ArcTan[a*x]^(3/2))/(c + a^2*c*x^2)^2,x]

[Out]

((4*Sqrt[ArcTan[a*x]]*(3*a*x + 2*(-1 + a^2*x^2)*ArcTan[a*x]))/(1 + a^2*x^2) - 3*Sqrt[Pi]*FresnelS[(2*Sqrt[ArcT
an[a*x]])/Sqrt[Pi]])/(32*a^2*c^2)

________________________________________________________________________________________

Maple [A]  time = 0.099, size = 67, normalized size = 0.6 \begin{align*} -{\frac{1}{32\,{a}^{2}{c}^{2}} \left ( 8\, \left ( \arctan \left ( ax \right ) \right ) ^{2}\cos \left ( 2\,\arctan \left ( ax \right ) \right ) +3\,\sqrt{\arctan \left ( ax \right ) }\sqrt{\pi }{\it FresnelS} \left ( 2\,{\frac{\sqrt{\arctan \left ( ax \right ) }}{\sqrt{\pi }}} \right ) -6\,\sin \left ( 2\,\arctan \left ( ax \right ) \right ) \arctan \left ( ax \right ) \right ){\frac{1}{\sqrt{\arctan \left ( ax \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*arctan(a*x)^(3/2)/(a^2*c*x^2+c)^2,x)

[Out]

-1/32/a^2/c^2*(8*arctan(a*x)^2*cos(2*arctan(a*x))+3*arctan(a*x)^(1/2)*Pi^(1/2)*FresnelS(2*arctan(a*x)^(1/2)/Pi
^(1/2))-6*sin(2*arctan(a*x))*arctan(a*x))/arctan(a*x)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arctan(a*x)^(3/2)/(a^2*c*x^2+c)^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arctan(a*x)^(3/2)/(a^2*c*x^2+c)^2,x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{x \operatorname{atan}^{\frac{3}{2}}{\left (a x \right )}}{a^{4} x^{4} + 2 a^{2} x^{2} + 1}\, dx}{c^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*atan(a*x)**(3/2)/(a**2*c*x**2+c)**2,x)

[Out]

Integral(x*atan(a*x)**(3/2)/(a**4*x**4 + 2*a**2*x**2 + 1), x)/c**2

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \arctan \left (a x\right )^{\frac{3}{2}}}{{\left (a^{2} c x^{2} + c\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arctan(a*x)^(3/2)/(a^2*c*x^2+c)^2,x, algorithm="giac")

[Out]

integrate(x*arctan(a*x)^(3/2)/(a^2*c*x^2 + c)^2, x)